Innovative Out-of-Stock Prediction System Based on Data History Knowledge Deep Learning Processing
نویسندگان
چکیده
Research and development efforts in the field of commercial applications have invested strategic interest design intelligent systems that correctly handle out-of-stock events. An event refers to a scenario which such customers do not availability products they want buy. This generates important economic damage producer store. Addressing problem is currently great as it would allow limiting damages deriving from these Furthermore, era online commerce (e-commerce), significantly limit events show considerable impact field. For reasons, authors proposed solution based on deep learning for predicting residual stock amount product analysis specific visual–commercial data well seasonality. By means combined pipeline embedding convolutional architecture boosted with self-attention mechanism downstream temporal network, will be able predict remaining particular commodity. integrating interpreting climate/seasonal information, customers’ behavior data, full history dynamics sales, possible estimate certain and, therefore, define purchase orders efficiently. accurate prediction stocks allows an efficient trade order policy results significant reduction The experimental confirmed effectiveness approach accuracy (in products) greater than 90%.
منابع مشابه
Deep Learning for Event-Driven Stock Prediction
We propose a deep learning method for eventdriven stock market prediction. First, events are extracted from news text, and represented as dense vectors, trained using a novel neural tensor network. Second, a deep convolutional neural network is used to model both short-term and long-term influences of events on stock price movements. Experimental results show that our model can achieve nearly 6...
متن کاملthe effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students
هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...
15 صفحه اولKnowledge-based diagnosis and prediction using big data and deep learning in precision medicine
By now, many of us have probably heard about (or work with) Watson for Oncology. This artificial intelligence program was developed by IBM Co. (Armonk, NY, USA) and can provide optimal and individualized treatment options for patients through its vast medical database and the patient’s own unique medical and genetic information. Worldwide, Watson has already been introduced and used for actual ...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computation (Basel)
سال: 2023
ISSN: ['2079-3197']
DOI: https://doi.org/10.3390/computation11030062